Chapter 3 Network Theory

3-1 Network and Flow
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Network: A simple, weighted, directed graph satisfies: (a) The source has no incoming edges. (b) The sink has no outgoing edges, (c) The weight Cij of the directed edge (i,j) is a nonnegative number. Cij is called the capacity of (i,j).
Flow: A flow Fij of the directed edge (i,j) is a nonnegative number and satisfies:

(a) Fij
[image: image118.jpg]


Cij. (b) 
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 for each vertex j, neither the source and the sink..
Eg. A network with edges label by capacity (left) and flow (right).
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Eg. Fill in the missing edge flows of the left network.

(Sol.) Fbc=Fab=3, Fad=Fde=2
Fce=Fez -Fde=3-2=1, Fcz= Fbc-Fce=3-1=2
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Eg. Fill in the missing edge flows of the left network.

(Sol.) Fbd=Fab–Fbc=2, Fec=Fcz-Fbc=2, Fad= Fde-Fbd=1
Fez= Fde-Fec=1
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Theorem The flow out of the source equals the flow into the sink. That is,  
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Value of the flow: The value of 
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Supersource and supersink: To be added in the original network without the source and the sink.
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Properly oriented path and improperly oriented path:
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Theorem Let P be a path from a to z in a network G. Let △=min(Cij - Fij for properly oriented edges (i,j), Fij for improperly oriented edges (i,j)). Define 
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Eg. Increase the flow of each edge in the left path.
(Sol.) △=min(3-1,1,3-2,5-1)=1

New flows: 1+1=2, 1-1=0, 2+1=3, 1+1=2
We have the new flows in the path:
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Eg. Increase the flow of each edge in the left path.
(Sol.) △=min(5-1,5-2,2,6-3)=2
New flows: 1+2=3, 2+2=4, 2-2=0, 3+2=5. We have the new flows in the path:
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Maximal flow algorithm

[image: image14.jpg]Input: A network with source a, sink z, capacity C,
vertices a = o,..., Uy = 2, and n

Output: A maximal flow F

max_flow(a,,C,v,n) [
7/ v's label s (predecessor (v), val(v))
// start with zero flow

1. foreach edge (i, )
5. Fij=0
3. while (true) |

// remove all labels

4 fori=0ton{
5 predecessor (v)) = null
6. val(v;) = null
7. 3
//label a
8 predecessor(a) = —
9. val(a) - =

// U is the set of unexamined, labeled vertices
10.




[image: image15.jpg]// find path P from a 1o z on which to revise flow
wo=z
k=0
while (wy ~=a) {
w1 = predecessor (wy)
k=k+1
3
P = (W1, Wi W1, Wo)
A=val(z)
fori=1tok+1{
e = (wywi1)
if (e is properly oriented in P)
Fe=FetA
else
E.
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)
1// end while (true) loop
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// continue until z is labeled
while (val(z) == nul) {
if (U == @) // flow is maximal
return F
choose v in U

for each edge (v, w) with val(w)
1 (Fyuw < Cuu)
predecessor(w) = v
val(w) = min{A, Cuw — Fou}
U=UuU{w}
)
for each edge (w, v) with val(w)

i (Fuy > 0)
predecessor (w) = v
val(w) = min{A, Fuy}
U=UUw)

}
}// end while (val(z)

nall) loop
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Eg. Find the maximum flow of the left path. The capacity Cij of each edge (i,j) has been labeled on the network.
(Sol.)
[image: image17.jpg]


→[image: image18.jpg]



[image: image19.jpg]


→[image: image20.jpg]32

5.4

2,2

2,2

4,4

4.2




[image: image107.jpg]


Eg. Find the maximum flow of the left path. The capacity Cij of each edge (i,j) has been labeled on the network.
(Sol.)
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Eg. Find the maximum flow of the left path. The capacity Cij of each edge (i,j) has been labeled on the network.
(Sol.)
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Cut (P,
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): A cut (P,
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) in G consists of a set P of vertices and the complement 
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 of P, with a
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P and z
[image: image32.wmf]Î



 EMBED Equation.3  [image: image33.wmf]P

.
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Eg. A cut (P,
[image: image34.wmf]P

) in the left network, where P={a,b,d} and 
[image: image35.wmf]P

={c,e,f,z}.
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Eg. A cut (P,
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) in the left network, where P={a,b,d} and 
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={c,e,z}.
Capacity of the cut (P,
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), C(P,
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): C(P,
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Eg. Find the capacity of the cut (P,
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) in the left network.
(Sol.) Cbc+Cde=4+4=8
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Eg. Find the capacity of the cut (P,
[image: image43.wmf]P

) in the left network.
(Sol.) Cbc+Cdc+Cde=2+2+2=6
Theorem 
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Max flow and min cut Theorem If equality holds in 
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, then the flow is maximal and the cut is minimal. Moreover, equality holds in 
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 if and only if (a) Fij=Cij for i
[image: image47.wmf]Î

P and j
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 EMBED Equation.3  [image: image49.wmf]P

 and (b) Fij=0 for i
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3-2 Matching

Matching: Let G be a directed, bipartite graph with disjoint vertex set V and W in which the edges are directed from vertices in V to vertices in W. A matching for G is a set of edges E with no vertices in common.
Maximal matching: A matching contains the maximum number of edges.
Complete matching: A matching having the property that if v
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V, then (v,w)
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E for some w
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W.

Eg. Two examples of matching. The black lines show maximal matching in each graph.

[image: image56.jpg]



→Maximal matching: [image: image57.jpg]o/
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→Maximal matching: [image: image59.jpg]Ae
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Matching network: Introducing a super source a and edges of capacity 1 from a to each of vi
[image: image60.wmf]Î

V, a super sink z and edges of capacity 1 from each of wj
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W to z.
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Eg. Transform the left matching for G into a matching network.
(Sol.) [image: image62.jpg]
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Eg. Find the maximal matching for the left graph.

(Sol.) Matching network:
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Eg. Find the maximal matching for the left graph.

(Sol.) Matching network:
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Eg. Find the maximal matching for the left graph.

(Sol.) Matching network:
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Theorem Let G be a directed, bipartite graph with disjoint vertex set V and W in which the edges are directed from vertices in V to vertices in W.

(a) A flow in the matching network gives a matching in G. The vertex v
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V is matched with the vertex w
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W if and only if the flow in edge (v,w)=1.

(b) A maximal flow corresponds to a maximal matching.

(c) A flow whose value is |V| corresponds to a complete matching.
Hall’s Marriage Theorem Let G be a directed, bipartite graph with disadjoint vertex set V and W in which the edges are directed from vertices in V to vertices in W. There exists a complete matching in G if and only if |S|
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|R(S)| for all S
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V, where R(S)={w
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S and (v,w) is an edge in G}.





Eg. There are 3 boys: a(周杰倫), b(劉德華), c(蘇友朋) and 4 girls: r(林志玲), s(侯佩岑), t(林嘉綺), u(白歆惠). If a likes r and s, b likes s and u, c likes r, t and u, can each boy marry a compatible girl?

(Sol.)

[image: image117.jpg]


Choose S1={a,b,c}, we have R(S1)={r,s,t,u} and |S1|=3<4=|R(S1)|
Choose S2={a,b}, we have R(S2)={r,s,u} and |S2|=2<3=|R(S2)|
Choose S3={a,c}, we have R(S3)={r,s,t,u} and |S3|=2<4=|R(S3)|. Choose S4={b,c}, we have R(S4)= {r,s,t,u} and |S4|=2<4=|R(S4)|, ∴ Yes! Each boy can marry a compatible girl.
Eg. There are 4 members in female F4: A(Amy), B(Fanny), C(Tiffany), and D(Stacy), who choose J1-J5. Let S={A,B,D}, we have R(S)={J2,J5} and |S|=3>2=|R(S)|, there is not a complete matching for the graph.
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Eg. There are 3 boys: a(金城武), b(彭政閔), c(張家浩) and 4 girls: r(柯以柔), s(許純美), t(蔡淑臻), u(如花). If a likes r and t, b likes only t, c likes r and t, can each boy marry a compatible girl? If s(許純美) and u(如花) are replaced by姚采穎and吳佩慈, how do you think about it?
(Sol.)

Choose S={a,b,c}, we have R(S)={r,t} and |S|=3>2=|R(S)|, ∴ No! Some boy can not marry a compatible girl. For example, if a married r and b marries t, c can not marry his compatible girl. Similarly, if a married t and c married r, b can not marry his compatible girl. In case c married r and b marries t, a can not marry his compatible girl.
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